Discovering networks altered by potential threat ("anxiety") using quadratic discriminant analysis
نویسندگان
چکیده
Researchers have only recently begun using functional neuroimaging to explore the human response to periods of sustained anxious anticipation, namely potential threat. Here, we investigated brain responses acquired with functional MRI during an instructed threat of shock paradigm used to create sustained periods of aversive anticipation. In this re-analysis of previously published data, we employed quadratic discriminant analysis to classify the multivariate pattern of whole-brain functional connectivity and to identify connectivity changes during periods of potential threat. Our method identifies clusters with altered connectivity on a voxelwise basis, thus eschewing the need to define regions a priori. Classifier generalization was evaluated by testing on data from participants not used during training. Robust classification between threat and safe contexts was possible, and inspection of "diagnostic features" revealed altered functional connectivity involving the intraparietal sulcus, task-negative regions, striatum, and anterior cingulate cortex. We anticipate that the proposed method will prove useful to experimenters wishing to identify large-scale functional networks that distinguish between experimental conditions or groups.
منابع مشابه
Discovering groups of key potential customers in social networks: A multi-objective optimization model
Nowadays, the popularity of social networks as marketing tools has brought a deal of attention to social networks analysis (SNA). One of the well-known Problems in this field is influence maximization problems which related to flow of information within networks. Although, the problem have been considered by many researchers, the concept behind of this problem has been used less in business con...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملIntrusion Detection in IOT based Networks Using Double Discriminant Analysis
Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the norma...
متن کاملBayesian Quadratic Discriminant Analysis
Quadratic discriminant analysis is a common tool for classification, but estimation of the Gaussian parameters can be ill-posed. This paper contains theoretical and algorithmic contributions to Bayesian estimation for quadratic discriminant analysis. A distribution-based Bayesian classifier is derived using information geometry. Using a calculus of variations approach to define a functional Bre...
متن کاملClassification Using Linear Discriminant Analysis and Quadratic Discriminant Analysis
2 Classification of One-Dimensional Data 2 2.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.1 Building the LDA Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1.2 Results of One-Dimensional LDA Classification . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Quadratic Discriminant Analysis . . . . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 116 شماره
صفحات -
تاریخ انتشار 2015